skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Foreman, Rhea K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Industrial activities have increased the supply of iron to the ocean, but the magnitude of anthropogenic input and its ecological consequences are not well-constrained by observations. Across four expeditions to the North Pacific transition zone, we document a repeated supply of isotopically light iron from an atmospheric source in spring, reflecting an estimated 39 ± 9 % anthropogenic contribution to the surface ocean iron budget. Expression of iron-stress genes in metatranscriptomes, and evidence for colimitation of ecosystem productivity by iron and nitrogen, indicates that enhanced iron supply should spur spring phytoplankton blooms, accelerating the seasonal drawdown of nitrate delivered by winter mixing. This effect is consistent with regional trends in satellite ocean color, which show a shorter, more intense spring bloom period, followed by an earlier arrival of oligotrophic conditions in summer. Continued iron emissions may contribute to poleward shifts in transitional marine ecosystems, compounding the anticipated impacts from ocean warming and stratification. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. From June to August 2018, the eruption of Kīlauea volcano on the island of Hawai‘i injected millions of cubic meters of molten lava into the nutrient-poor waters of the North Pacific Subtropical Gyre. The lava-impacted seawater was characterized by high concentrations of metals and nutrients that stimulated phytoplankton growth, resulting in an extensive plume of chlorophyll a that was detectable by satellite. Chemical and molecular evidence revealed that this biological response hinged on unexpectedly high concentrations of nitrate, despite the negligible quantities of nitrogen in basaltic lava. We hypothesize that the high nitrate was caused by buoyant plumes of nutrient-rich deep waters created by the substantial input of lava into the ocean. This large-scale ocean fertilization was therefore a unique perturbation event that revealed how marine ecosystems respond to exogenous inputs of nutrients. 
    more » « less
  3. Abstract In oligotrophic ocean regions, dissolved organic phosphorus (DOP) plays a prominent role as a source of phosphorus (P) to microorganisms. An important bioavailable component of DOP is phosphonates, organophosphorus compounds with a carbon‐phosphorus (C‐P) bond, which are ubiquitous in high molecular weight dissolved organic matter (HMWDOM). In addition to being a source of P, the degradation of phosphonates by the bacterial C‐P lyase enzymatic pathway causes the release of trace hydrocarbon gases relevant to climate and atmospheric chemistry. In this study, we investigated the roles of phosphate and phosphonate cycling in the production of methane (CH4) and ethylene (C2H4) in the western North Atlantic Ocean, a region that features a transition in phosphate concentrations from coastal to open ocean waters. We observed an inverse relationship between phosphate and the saturation state of CH4and C2H4in the water column, and between phosphate and the relative abundance of the C‐P lyase marker genephnJ. In phosphate‐depleted waters, methylphosphonate and 2‐hydroxyethylphosphonate, the C‐P lyase substrates that yield CH4and C2H4, respectively, were readily degraded in proportions consistent with their abundance and bioavailability in HMWDOM and with the concentrations of CH4and C2H4in the water column. We conclude that phosphonate degradation through the C‐P lyase pathway is an important source and a common production pathway of CH4and C2H4in the phosphate‐depleted surface waters of the western North Atlantic Ocean and that phosphate concentration can be an important control on the saturation state of these gases in the upper ocean. 
    more » « less
  4. Abstract Photolysis of dissolved organic matter using high‐intensity, ultraviolet (UV) light has been utilized since the 1960s as a method for the oxidation and subsequent quantification of dissolved organic nitrogen and phosphorus (DON and DOP) in both freshwater and marine water. However, conventional UV systems yielded variable and sometimes unreliable results; consequently, the method fell out of favor throughout much of the oceanographic community. Researchers turned to other oxidation methods such as persulfate oxidation or high‐temperature combustion, even though they have difficulty when DON and DOP are <10% of the total dissolved N and P (for example, in the deep sea and in surface waters at high latitudes). Here, we revive the UV oxidation method using modernized light‐generating equipment and high‐precision colorimetric analysis of the oxidation products, resulting in the most well‐constrained full ocean depth profiles of DON and DOP that are available to date. At Station ALOHA, in the North Pacific Subtropical Gyre, in the depth range of 900–4800 m, we find that DON is 2.2 ± 0.2μmol L−1(n  = 49), DOP is 0.049 ± 0.004μmol L−1(n  = 19), and the DOC : DON : DOP molar stochiometric relationship is 759 : 45 : 1. Preliminary estimates for the global ocean inventories of refractory DON and DOP are placed at 43.6 Pg N and 2.14 Pg P. 
    more » « less